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Introduction and motivation

We consider damped linear vibration system

Mq̈(t) + C(v)q̇(t) +Kq(t) = f(t),

q(0) = q0, and q̇(0) = q̇0.

Where M,C(v),K ∈ Rn×n system matrices, v ∈ Rs parameter vector.

• M,K are positive definite Herimitian matrices

• C(v) = Cint + Cext(v), Cint > 0 internal damping, Cext(v) ≥ 0
external damping.

• Cext(v) =
s∑
i=1

vigig
T
i

• Cint = αcCcrit, where Ccrit = 2M1/2
√
M−1/2KM−1/2M1/2.
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Linearization

• Let Φ simultaneously diagonalize pair M and K

ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n) and ΦTMΦ = I.

Note that internal damping is s.t. ΦTCintΦ = αΩ.
With q = ΦqΦ and y1 = ΩqΦ, y2 = q̇Φ we have

d

dt

[
y1

y2

]
=

[
0 Ω
−Ω −ΦTC(v)Φ

]
︸ ︷︷ ︸

A(v)

[
y1

y2

]
.

We obtain first order differential equation:

ẏ = Ay, with solution y = eAty0, where y0 is initial data.
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We consider parameter dependant QEP:(
λ2(v)M + λ(v)C(v) +K

)
x(v) = 0.

With w1(v) = ΩΦ−1x(v) and w2(v) = λ(v)Ω−1w1(v) we have

λ(v)

[
w1(v)
w2(v)

]
=

[
0 Ω
−Ω −ΦTC(v)Φ

]
︸ ︷︷ ︸

A(v)

[
w1(v)
w2(v)

]
.
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Very important question arises in considering such systems:
For the given mass (M) and stiffness (K) determine the best (optimal)
damping which will insure optimal evanescence.

(M,K), A not stable (M,K,C), A stable
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Very important question arises in considering such systems:
How to re-design a given damped mechanical system, such that a new
system does not have eigenvalues in some ”dangerous” part of a complex
plane, typically called the resonance band.
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Optimization criteria

• Minimization of spectral abscissa

αMCK(v) → min
v
,

where αMCK(v) = maxk Reλk(v) and λk(v) are the
eigenvalues of(

λ2(v)M + λ(v)C(v) +K
)
x(v) = 0.
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Optimization criteria-idea

The undesirable frequency band: [ω − b, ω + b], for some given b > 0,
where ω ∈ R is an undesirable frequency.

min
v∈Rs

max{Reλ(v) : λ(v) ∈ Λ(v) and Imλ(v) ∈ [ω − b, ω + b]}

s.t. αMCK(v) ≤ tolsa for some tolsa < 0,

vj ≥ 0 for j = 1, . . . , s
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Using ellipse instead of band

Let E = (a, b, c) denote the axis-aligned ellipse

(x− Re c)2

a2
+

(y − Im c)2

b2
= 1,

where a, b > 0 respectively denote the semi-major and -minor axes and
c ∈ C is the center of the ellipse. Identifying R2 with C, consider the
following algebraic distance d : C 7→ [0,∞) of a point z ∈ C to this
ellipse, i.e.,

d(z;E) :=
(Re(z − c))2

a2
+

(Im(z − c))2

b2
.
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Using ellipse instead of band

Measure of the distance of the spectrum to the undesirable frequency
[ω − b, ω + b], we define

dΛ,E(v) := min{d(λ(v);E) : λ(v) ∈ Λ(v)},

where E = (a, b, iω). Similarly,

dΛ,E(v) := min{dΛ,Ej (v) : Ej ∈ E},

where Ej := (aj , bj , iωj) is defining the jth ellipse for the jth
undesirable frequency band [ωj − bj , ωj + bj ] with relative importance
aj > 0 and E := {E1, . . . , Ek} is the set of k corresponding ellipses.
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New optimization criteria

• Frequency isolation while minimizing spectral abscissa (FI1)

FI1: min
v∈Rs

αMCK(v)

s.t. dΛ,E(v) ≥ 1,

αMCK(v) ≤ tolsa for some tolsa < 0,

vj ≥ 0 for j = 1, . . . , s.
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New optimization criteria

• Frequency isolation while maximizing the major axis of the ellipses
(FI2)

FI2: max
v∈Rs

k∑
j=1

φjaΛ,Ej (v)

s.t. αMCK(v) ≤ tolsa for some tolsa < 0,

vj ≥ 0 for j = 1, . . . , s.

where aΛ,E(v) := min{a(λ(v);E) : λ(v) ∈ Λ(v)},

a(z;E) :=


b|Re z|√

b2−(Im z−ω)2
, if Im z ∈ (ω − b, ω + b),

∞ otherwise.
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GRANSO: GRadient-based Algorithm for Non-Smooth
Optimization

Requires gradients:

∂λ(v)

∂vj

∣∣∣∣
v=v̂

= −
x̂∗
(
λ(v̂)gjg

T
j

)
x̂

x̂∗(2λ(v̂)M + C(v̂))x̂
,

∂αMCK(v)

∂vj

∣∣∣∣
v=v̂

= −Re
∂λ(v)

∂vj

∣∣∣∣
v=v̂

,

d
′
(z(t);E) = 2

(
Re(z(t)− c) · Rez′(t)

a2
+

Im(z(t)− c) · Imz′(t)
b2

)
,

a
′
(z(t);E) =

b sgn(Re z(t)) · Re z′(t)

(b2 − (Im z(t)− ω)2)1/2
+
b|Re z(t)|(Im z(t)− ω) · Im z′(t)

(b2 − (Im z(t)− ω)2)3/2
.
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Apply s times efficient algorithm for computing eigenvalues of
(CSymDPR1) matrix A = D + ρuuT .

The eigenvalues of A are the zeros of the secular function:

f(λ) = 1 + ρ

2n∑
i=1

u2
i

di − λ
= 1 + ρuT (D − λI)−1u,

and the corresponding eigenvectors are given by

wi =
yi
‖yi‖2

, where yi = (D − λiI)−1u, i = 1, . . . , 2n.
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initial vector y0 6= 0

Rayleigh quotient iteration
λ = 0

until convergence

1. y1 := (A− λI)−1y0

2. µ = y1
T
y0

y0T y0

3. λ = λ+ 1
µ

4. y0 = y1

Modified Rayleigh quotient iteration
λ = 0

until convergence

1. µ = η y
0T (A−λI)y0

y0T y0

2. λ = λ+ µ

3. y0 := (D − λI)−1u

compute eigenvectors

N. Jakovčević Stor, I. Slapničar, and Z. Tomljanović. Fast computation of optimal
damping parameters for linear vibrational systems.arXiv e-prints, 2020
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Cext(v) =

s∑
i=1

vigig
T
i = Gdiag(v)GT

How to get from Ay = λy, where

A =

[
0 Ω
−Ω −αΩ− ΦTGdiag(v)GTΦ

]
,

to multiple CSymDPR1 eigenvalue problem?
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A =

[
0 Ω
−Ω −αΩ

]
+

[
0 0
0 −ΦTGdiag(v)GTΦ

]

+ +...+
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P T · \ A =

[
0 Ω
−Ω −αΩ

]
+

[
0 0
0 −ΦTGdiag(v)GTΦ

]
/ · P

+ +...+
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+ +...+

P TAP =

([
D1

. . .
Dn

]
− Ĝ

[ v1
. . .

vs

]
Ĝ

)
, where

Di =

[
0 ωi
−ωi −αωi

]
and Ĝ = P T

[
0

ΦTG

]
.
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Ψ−1 · \ P TAP =

([
D1

. . .
Dn

]
− Ĝ

[ v1
. . .

vs

]
Ĝ

)
, / · Ψ

where Ψ =

[
Ψ1

. . .
Ψn

]

+ +...+

Matea Ugrica
Frequency-weighted damping via nonsmooth optimization and fast computation of

QEPs with low-rank updates 17/27



Introduction and motivation
Solving optimization problem
Numerical experiments

GRANSO
Modified Rayleigh quotient Approximation
DPR1 structure
Optimization algorithm

+ +...+

Ã = D − U
[ v1

. . .
vs

]
ZT = D −

s∑
j=1

vjujz
T
j ,

D = Ψ−1

[
D1

. . .
Dn

]
Ψ,

U = Ψ−1Ĝ, and Z = ΨT Ĝ,
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Algorithm 1 Frequency-weighted damping optimization algorithm

Input: M and K , α ≥ 0 for Cint and G, set of k ellipses E ,
weights [φ1, . . . , φk] with each φj ∈ (0, 1] for ellipse Ej ∈ E ,
tolsa < 0, initial viscosity vinit ∈ Rs+, and approach ∈ {1, 2}.

Output: Computed for optimized viscosities vopt ∈ Rs+ for either FI1 or
FI2

1: [Φ,Ω] matrices from linearization
2: [Ψ, D, U, Z] matrices that construct low-rank structure
3: if approach = 1 then
4: vopt ← solution returned by GRANSO for FI1 initialized at vinit

5: else
6: vopt ← solution returned by GRANSO for FI2 initialized at vinit

7: end if
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m1 m2 mn−1 mn

k1

v1

k2

v2 v3

kn kn+1

Figure: n-mass oscillator

n = 200 · i, i = 1, . . . , 10,

M = diag(m1,m2, . . . ,mn),

mi = 10 +
990

n− 1
· (i− 1), i = 1, . . . , n
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Example

K =


k1+k2 −k2

−k2
. . .

. . .
. . .

. . . −kn
−kn kn+kn+1

, ki = 5, i = 1, . . . , n+ 1

Cext = v1eke
T
k + v2(ej − ej+1)(ej − ej+1)T + v3ele

T
l , α = 0.004

v = [v1, v2, v3]T , v1, v2, v3 ∈ [0.1, 1.1]

(k, j, l) =

(
n

10
,
3n

10
,
5n

10

)
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Example

m1 m2 mn−1 mn

k1

v1

k2

v2 v3

kn kn+1

Figure: n-mass oscillator

n = 1000,

mi = mn+1−i =
2n− i

200
for i = 1, . . . ,

n

2
,

ki = 5 for i = 1, . . . , n+ 1,

(j, k, l) = (100, 400, 900),

vinit = ones(3,1).
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E = (0.001, 0.2, 0.95i)

-2.5 -2 -1.5 -1 -0.5 0
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-3

0

0.2

0.4

0.6

0.8

1

1.2

(a) Spectral abscissa minimization only

vopt =

314.794.1
124.5



-2.5 -2 -1.5 -1 -0.5 0

10
-3

0

0.2

0.4

0.6

0.8

1

1.2

(b) Approach 1 (Fixed ellipses)

vopt =

8.0328.184
9.970


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E1 = (∼, 0.05, 0.1i), φ1 = 1, E2 = (∼, 0.05, 0.6i), φ2 = 0.2, E3 = (∼, 0.05, 1.1i), φ3 = 0.1

-2.5 -2 -1.5 -1 -0.5 0
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1

1.2

(c) α = 0.004,

vopt =

8.1377.147
1.789


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(d) α = 0.0004,

vopt =

8.2947.767
1.673


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Thank you for your attention!
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