Frequency-weighted damping via nonsmooth optimization and fast computation of QEPs with low-rank updates

UNIVERSITY J. J. STROSSMAYER OF OSIJEK DEPARTMENT OF MATHEMATICS Trg Ljudevita Gaja 6 31000 Osijek, Croatia

http://www.mathos.unios.hr

mugrica@mathos.hr

Joint work with:

Nevena Jakovčević Stor, Tim Mitchell, Zoran Tomljanović

[WORKSHOP ON CONTROL OF DYNAMICAL SYSTEMS 2021,

DUBROVNIK]

14.-16.6.2021.

Problem formulation Optimization criteria New optimization criteria

Introduction and motivation

We consider damped linear vibration system

$$\begin{split} M\ddot{q}(t) + C(v)\dot{q}(t) + Kq(t) &= f(t), \\ q(0) &= q_0, \quad \text{and} \quad \dot{q}(0) &= \dot{q}_0. \end{split}$$

Where $M, C(v), K \in \mathbb{R}^{n \times n}$ system matrices, $v \in \mathbb{R}^s$ parameter vector.

- M, K are positive definite Herimitian matrices
- $C(v) = C_{int} + C_{ext}(v), C_{int} > 0$ internal damping, $C_{ext}(v) \ge 0$ external damping.

•
$$C_{ext}(v) = \sum_{i=1}^{s} v_i g_i g_i^T$$

• $C_{int} = \alpha_c C_{crit}$, where $C_{crit} = 2M^{1/2} \sqrt{M^{-1/2} K M^{-1/2}} M^{1/2}$.

Linearization

- Let Φ simultaneously diagonalize pair M and K

$$\Phi^T K \Phi = \Omega^2 = \operatorname{diag}(\omega_1^2, \dots, \omega_n^2)$$
 and $\Phi^T M \Phi = I.$

Problem formulation

Optimization criteria

New optimization criteria

Note that internal damping is s.t. $\Phi^T C_{int} \Phi = \alpha \Omega$. With $q = \Phi q_{\Phi}$ and $y_1 = \Omega q_{\Phi}$, $y_2 = \dot{q}_{\Phi}$ we have

$$\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & \Omega \\ -\Omega & -\Phi^T C(v)\Phi \end{bmatrix}}_{A(v)} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

We obtain first order differential equation:

$$\dot{y} = Ay$$
, with solution $y = e^{At}y_0$, where y_0 is initial data.

Linearization

- Let Φ simultaneously diagonalize pair M and K

$$\Phi^T K \Phi = \Omega^2 = \operatorname{diag}(\omega_1^2, \dots, \omega_n^2)$$
 and $\Phi^T M \Phi = I.$

Problem formulation

Optimization criteria

New optimization criteria

Note that internal damping is s.t. $\Phi^T C_{int} \Phi = \alpha \Omega$. With $q = \Phi q_{\Phi}$ and $y_1 = \Omega q_{\Phi}$, $y_2 = \dot{q}_{\Phi}$ we have

$$\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & \Omega \\ -\Omega & -\Phi^T C(v)\Phi \end{bmatrix}}_{A(v)} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

We obtain first order differential equation:

$$\dot{y} = Ay$$
, with solution $y = e^{At}y_0$, where y_0 is initial data.

Problem formulation Optimization criteria New optimization criteria

We consider parameter dependant QEP:

$$\begin{aligned} \left(\lambda^2(v)M + \lambda(v)C(v) + K\right)x(v) &= 0. \end{aligned} \\ \text{With } w_1(v) &= \Omega \Phi^{-1}x(v) \text{ and } w_2(v) &= \lambda(v)\Omega^{-1}w_1(v) \text{ we have} \\ \lambda(v) \left[\begin{array}{c} w_1(v) \\ w_2(v) \end{array} \right] &= \underbrace{ \begin{bmatrix} 0 & \Omega \\ -\Omega & -\Phi^T C(v)\Phi \\ A(v) \end{bmatrix} \left[\begin{array}{c} w_1(v) \\ w_2(v) \end{array} \right]. \end{aligned}$$

Problem formulation Optimization criteria New optimization criteria

Very important question arises in considering such systems:

For the given mass (M) and stiffness (K) determine the best (optimal) damping which will insure optimal evanescence.

 $\left(M,K
ight)$, A not stable

Problem formulation Optimization criteria New optimization criteria

Very important question arises in considering such systems:

For the given mass (M) and stiffness (K) determine the best (optimal) damping which will insure optimal evanescence.

(M,K), A not stable

Problem formulation Optimization criteria New optimization criteria

Very important question arises in considering such systems:

For the given mass (M) and stiffness (K) determine the best (optimal) damping which will insure optimal evanescence.

(M,K,C), A stable

Problem formulation Optimization criteria New optimization criteria

Very important question arises in considering such systems:

For the given mass (M) and stiffness (K) determine the best (optimal) damping which will insure optimal evanescence.


```
(M, K, C), A stable
```


Problem formulation Optimization criteria New optimization criteria

Very important question arises in considering such systems:

For the given mass (M) and stiffness (K) determine the best (optimal) damping which will insure optimal evanescence.

Problem formulation Optimization criteria New optimization criteria

Very important question arises in considering such systems:

How to re-design a given damped mechanical system, such that a new system does not have eigenvalues in some "dangerous" part of a complex plane, typically called the resonance band.

Optimization criteria

Problem formulation Optimization criteria New optimization criteria

Minimization of spectral abscissa

$$\alpha_{MCK}(v) \rightarrow \min_{v},$$

where $\alpha_{MCK}(v) = \max_k \operatorname{Re} \lambda_k(v)$ and $\lambda_k(v)$ are the eigenvalues of

$$\left(\lambda^2(v)M + \lambda(v)C(v) + K\right)x(v) = 0.$$

Optimization criteria

Problem formulation Optimization criteria New optimization criteria

Minimization of spectral abscissa

$$\alpha_{MCK}(v) \rightarrow \min_{v},$$

where $\alpha_{MCK}(v) = \max_k \operatorname{Re} \lambda_k(v)$ and $\lambda_k(v)$ are the eigenvalues of

$$\left(\lambda^2(v)M + \lambda(v)C(v) + K\right)x(v) = 0.$$

Problem formulation Optimization criteria New optimization criteria

Optimization criteria-idea

The undesirable frequency band: $[\omega - b, \omega + b]$, for some given b > 0, where $\omega \in \mathbb{R}$ is an undesirable frequency.

 $\min_{v \in \mathbb{R}^s} \quad \max\{ \operatorname{Re} \lambda(v) : \lambda(v) \in \Lambda(v) \text{ and } \operatorname{Im} \lambda(v) \in [\omega - b, \omega + b] \}$

s.t.
$$\alpha_{\mathrm{MCK}}(v) \leq \mathtt{tol}_{\mathrm{sa}} \text{ for some tol}_{\mathrm{sa}} < 0,$$

 $v_j \geq 0 \text{ for } j = 1, \dots, s$

Problem formulation Optimization criteria New optimization criteria

Using ellipse instead of band

Let E = (a, b, c) denote the axis-aligned ellipse

$$\frac{(x - \operatorname{Re} c)^2}{a^2} + \frac{(y - \operatorname{Im} c)^2}{b^2} = 1,$$

where a, b > 0 respectively denote the semi-major and -minor axes and $c \in \mathbb{C}$ is the center of the ellipse. Identifying \mathbb{R}^2 with \mathbb{C} , consider the following algebraic distance $d : \mathbb{C} \mapsto [0, \infty)$ of a point $z \in \mathbb{C}$ to this ellipse, i.e.,

$$d(z; E) \coloneqq \frac{(\operatorname{Re}(z-c))^2}{a^2} + \frac{(\operatorname{Im}(z-c))^2}{b^2}$$

Problem formulation Optimization criteria New optimization criteria

Using ellipse instead of band

Measure of the distance of the spectrum to the undesirable frequency $[\omega-b,\omega+b],$ we define

$$d_{\Lambda,E}(v) \coloneqq \min\{d(\lambda(v); E) : \lambda(v) \in \Lambda(v)\},\$$

where $E = (a, b, \mathbf{i}\omega)$. Similarly,

$$d_{\Lambda,\mathcal{E}}(v) \coloneqq \min\{d_{\Lambda,E_j}(v) : E_j \in \mathcal{E}\},\$$

where $E_j := (a_j, b_j, \mathbf{i}\omega_j)$ is defining the *j*th ellipse for the *j*th undesirable frequency band $[\omega_j - b_j, \omega_j + b_j]$ with relative importance $a_j > 0$ and $\mathcal{E} := \{E_1, \ldots, E_k\}$ is the set of *k* corresponding ellipses.

Problem formulation Optimization criteria New optimization criteria

New optimization criteria

• Frequency isolation while minimizing spectral abscissa (FI1)

$$\begin{aligned} \text{FI1:} & \min_{v \in \mathbb{R}^s} & \alpha_{\text{MCK}}(v) \\ & \text{s.t.} & d_{\Lambda, \mathcal{E}}(v) \geq 1, \\ & \alpha_{\text{MCK}}(v) \leq \texttt{tol}_{\text{sa}} \text{ for some } \texttt{tol}_{\text{sa}} < 0, \\ & v_j \geq 0 \text{ for } j = 1, \dots, s. \end{aligned}$$

Problem formulation Optimization criteria New optimization criteria

New optimization criteria

 Frequency isolation while maximizing the major axis of the ellipses (FI2)

FI2:

$$\max_{v \in \mathbb{R}^s} \sum_{j=1}^k \phi_j a_{\Lambda, E_j}(v)$$

s.t. $\alpha_{MCK}(v) \leq tol_{sa}$ for some $tol_{sa} < 0$, $v_j \geq 0$ for $j = 1, \dots, s$.

where $a_{\Lambda,E}(v) \coloneqq \min\{a(\lambda(v); E) : \lambda(v) \in \Lambda(v)\},\$

$$a(z;E) \coloneqq \begin{cases} \frac{b|\mathrm{Re}\,z|}{\sqrt{b^2 - (\mathrm{Im}\,z - \omega)^2}}, & \text{ if } \mathrm{Im}\,z \in (\omega - b, \omega + b), \\ \infty & \text{ otherwise.} \end{cases}$$

GRANSO

Modified Rayleigh quotient Approximation DPR1 structure Optimization algorithm

GRANSO: GRadient-based Algorithm for Non-Smooth Optimization

Requires gradients:

$$\begin{split} & \left. \frac{\partial \lambda(v)}{\partial v_j} \right|_{v=\hat{v}} &= -\frac{\hat{x}^* \left(\lambda(\hat{v}) g_j g_j^T \right) \hat{x}}{\hat{x}^* (2\lambda(\hat{v})M + C(\hat{v})) \hat{x}}, \\ & \left. \frac{\partial \alpha_{\mathrm{MCK}}(v)}{\partial v_j} \right|_{v=\hat{v}} &= -\mathrm{Re} \frac{\partial \lambda(v)}{\partial v_j} \right|_{v=\hat{v}}, \\ & d'(z(t); E) &= 2 \left(\frac{\mathrm{Re}(z(t) - c) \cdot \mathrm{Re}z'(t)}{a^2} + \frac{\mathrm{Im}(z(t) - c) \cdot \mathrm{Im}z'(t)}{b^2} \right), \\ & a'(z(t); E) &= \frac{b \operatorname{sgn}(\mathrm{Re}\, z(t)) \cdot \mathrm{Re}\, z'(t)}{(b^2 - (\mathrm{Im}\, z(t) - \omega)^2)^{1/2}} + \frac{b |\mathrm{Re}\, z(t)| (\mathrm{Im}\, z(t) - \omega) \cdot \mathrm{Im}\, z'(t)}{(b^2 - (\mathrm{Im}\, z(t) - \omega)^2)^{3/2}}. \end{split}$$

GRANSO Modified Rayleigh quotient Approximation DPR1 structure Optimization algorithm

Apply s times efficient algorithm for computing eigenvalues of (CSymDPR1) matrix $A=D+\rho u u^T$.

The eigenvalues of ${\cal A}$ are the zeros of the secular function:

$$f(\lambda) = 1 + \rho \sum_{i=1}^{2n} \frac{u_i^2}{d_i - \lambda} = 1 + \rho u^T (D - \lambda I)^{-1} u,$$

and the corresponding eigenvectors are given by

$$w_i = \frac{y_i}{\|y_i\|_2}$$
, where $y_i = (D - \lambda_i I)^{-1} u$, $i = 1, \dots, 2n$.

GRANSO Modified Rayleigh quotient Approximation DPR1 structure Optimization algorithm

Apply s times efficient algorithm for computing eigenvalues of (CSymDPR1) matrix $A=D+\rho u u^T$.

The eigenvalues of A are the zeros of the secular function:

$$f(\lambda) = 1 + \rho \sum_{i=1}^{2n} \frac{u_i^2}{d_i - \lambda} = 1 + \rho u^T (D - \lambda I)^{-1} u,$$

and the corresponding eigenvectors are given by

$$w_i = \frac{y_i}{\|y_i\|_2}$$
, where $y_i = (D - \lambda_i I)^{-1} u$, $i = 1, \dots, 2n$.

initial vector $y_0 \neq 0$

GRANSO Modified Rayleigh quotient Approximation DPR1 structure Optimization algorithm

Rayleigh quotient iteration $\lambda = 0$

until convergence

()
$$y^{1} := (A - \lambda I)^{-1} y^{0}$$

() $\mu = \frac{y^{1^{T}} y^{0}}{y^{0^{T}} y^{0}}$
() $\lambda = \lambda + \frac{1}{\mu}$
() $y^{0} = y^{1}$

Modified Rayleigh quotient iteration $\lambda = 0$

until convergence

•
$$\mu = \eta \frac{y^{0^T} (A - \lambda I) y^0}{y^{0^T} y^0}$$

• $\lambda = \lambda + \mu$
• $y^0 := (D - \lambda I)^{-1} u$

compute eigenvectors

N. Jakovčević Stor, I. Slapničar, and Z. Tomljanović. *Fast computation of optimal damping parameters for linear vibrational systems.arXiv e-prints*, 2020

GRANSO Modified Rayleigh quotient Approximation DPR1 structure Optimization algorithm

$$C_{ext}(v) = \sum_{i=1}^{s} v_i g_i g_i^T = G \operatorname{diag}(v) G^T$$

How to get from $Ay = \lambda y$, where

$$A = \begin{bmatrix} 0 & \Omega \\ -\Omega & -\alpha\Omega - \Phi^T G \operatorname{diag}(v) G^T \Phi \end{bmatrix},$$

to multiple CSymDPR1 eigenvalue problem?

$$A = \begin{bmatrix} 0 & \Omega \\ -\Omega & -\alpha \Omega \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & -\Phi^T G \operatorname{diag}(v) G^T \Phi \end{bmatrix}$$
$$+ + + \dots +$$

$$\begin{split} P^{T}AP &= \left(\begin{bmatrix} D_{1} & & \\ & \ddots & \\ & & D_{n} \end{bmatrix} - \widehat{G} \begin{bmatrix} v_{1} & & \\ & \ddots & v_{s} \end{bmatrix} \widehat{G} \right), & \text{where} \\ D_{i} &= \begin{bmatrix} 0 & \omega_{i} \\ -\omega_{i} & -\alpha\omega_{i} \end{bmatrix} & \text{and} & \widehat{G} = P^{T} \begin{bmatrix} 0 \\ \Phi^{T}G \end{bmatrix}. \end{split}$$

$$\begin{split} \Psi^{-1} \cdot & \setminus P^{T}AP &= \left(\begin{bmatrix} D_{1} & & \\ & \ddots & \\ & & D_{n} \end{bmatrix} - \widehat{G} \begin{bmatrix} v_{1} & & \\ & \ddots & \\ & & v_{s} \end{bmatrix} \widehat{G} \right), \quad / \quad \cdot \Psi \end{split}$$
where $\Psi = \begin{bmatrix} \Psi_{1} & & \\ & \ddots & \\ & & \Psi_{n} \end{bmatrix}$

$$+ \begin{bmatrix} & & & \\ & & + & \\ & & + & + \end{bmatrix}$$

$$\begin{split} \widetilde{A} &= D - U \begin{bmatrix} v_1 \\ \ddots \\ v_s \end{bmatrix} Z^T = D - \sum_{j=1}^s v_j u_j z_j^T, \\ D &= \Psi^{-1} \begin{bmatrix} D_1 \\ \ddots \\ D_n \end{bmatrix} \Psi, \\ U &= \Psi^{-1} \widehat{G}, \quad \text{and} \quad Z = \Psi^T \widehat{G}, \end{split}$$

GRANSO Modified Rayleigh quotient Approximation DPR1 structure Optimization algorithm

Algorithm 1 Frequency-weighted damping optimization algorithm

Input: M and K, $\alpha \geq 0$ for C_{int} and G, set of k ellipses \mathcal{E} , weights $[\phi_1, \ldots, \phi_k]$ with each $\phi_j \in (0, 1]$ for ellipse $E_j \in \mathcal{E}$, $\texttt{tol}_{\text{sa}} < 0$, initial viscosity $v_{\text{init}} \in \mathbb{R}^s_+$, and $\texttt{approach} \in \{1, 2\}$.

Output: Computed for optimized viscosities $v_{\mathrm{opt}} \in \mathbb{R}^s_+$ for either FI1 or FI2

- 1: $[\Phi,\Omega]$ matrices from linearization
- 2: $\left[\Psi,D,U,Z\right]$ matrices that construct low-rank structure
- 3: if approach = 1 then
- 4: $v_{\mathrm{opt}} \leftarrow$ solution returned by GRANSO for FI1 initialized at v_{init}
- 5: **else**
- 6: $v_{\mathrm{opt}} \leftarrow$ solution returned by GRANSO for FI2 initialized at v_{init}
- 7: end if

Figure: n-mass oscillator

$$n = 200 \cdot i, \quad i = 1, ..., 10,$$

$$M = \text{diag}(m_1, m_2, ..., m_n),$$

$$m_i = 10 + \frac{990}{n-1} \cdot (i-1), i = 1, ..., n$$

Example

Example - eigenvalue approximation Example - optimization criteria

$$K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & \ddots & \ddots \\ & \ddots & \ddots & -k_n \\ & & -k_n & k_n + k_{n+1} \end{bmatrix}, \quad k_i = 5, i = 1, \dots, n+1$$

 $C_{\text{ext}} = v_1 e_k e_k^T + v_2 (e_j - e_{j+1}) (e_j - e_{j+1})^T + v_3 e_l e_l^T, \alpha = 0.004$ $v = [v_1, v_2, v_3]^T, v_1, v_2, v_3 \in [0.1, 1.1]$

$$(k, j, l) = \left(\frac{n}{10}, \frac{3n}{10}, \frac{5n}{10}\right)$$

Figure: n-mass oscillator

Example - eigenvalue approximation Example - optimization criteria

 $E = (0.001, 0.2, 0.95\mathbf{i})$

Example - eigenvalue approximation Example - optimization criteria

Thank you for your attention!