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Introduction and motivation

We consider damped linear vibration system

Mi(t) + C(v)q(t) + Kq(t) = f(t),
q(0) =qo, and ¢(0) = qo.

Where M, C(v), K € R"*" system matrices, v € R® parameter vector.

® M, K are positive definite Herimitian matrices

® C(v) = Cint + Cegt(v), Cing > 0 internal damping, Ceye(v) > 0

external damping.
S

b ewt(v) = Z Uzgzng
=1

® Cint = 0eClrit, Where Criy = 2MY 2/ M—-12K M—1/20M1/2,
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Linearization

® | et ® simultaneously diagonalize pair M and K

TK® = Q% = diag(w?,...,w?) and ®TM® =1.

n

Note that internal damping is s.t. ®7 Cj,; ® = af.
With ¢ = ®gg and y1 = ¢, Y2 = §o we have

i) =[50 v |[0]

Alv)
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We obtain first order differential equation:

y = Ay, withsolution y = etyg, where yq s initial data.
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We consider parameter dependant QEP:
(A2(v)M + A(v)C(v) + K) z(v) = 0.
With wy (v) = Q@ Lz(v) and wa(v) = A(v)Q2 1wy (v) we have
wi(v) | | O Q wi (v)
AlY) { ws(v) ] = [ —0 —aTC(w)® ] [ ws(v) ] |

Alv)
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Very important question arises in considering such systems:

For the given mass (M) and stiffness (K) determine the best (optimal)
damping which will insure optimal evanescence.
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Very important question arises in considering such systems:

How to re-design a given damped mechanical system, such that a new
system does not have eigenvalues in some "dangerous” part of a complex
plane, typically called the resonance band.
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® Minimization of spectral abscissa
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Optimization criteria

® Minimization of spectral abscissa
ayeck(v) —  min,
v

where ayro i (v) = maxy, Re A (v) and Ag(v) are the
eigenvalues of

(AQ(U)M + A(v)C(v) + K) z(v) = 0.
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Optimization criteria-idea

The undesirable frequency band: [w — b, w + b], for some given b > 0,
where w € R is an undesirable frequency.

m'ﬁ{n max{Re A(v) : A(v) € A(v) and Im A\(v) € [w — b,w + b]}
veERS?
st. anmek(v) < tolg, for some tolg, < 0,

v; > 0forj=1,...,s
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Using ellipse instead of band

Let E = (a, b, ¢) denote the axis-aligned ellipse

(r —Rec)? (y—Ime)?
a2 T b2

=1,

where a, b > 0 respectively denote the semi-major and -minor axes and
¢ € Cis the center of the ellipse. Identifying R? with C, consider the
following algebraic distance d : C — [0, 0o) of a point z € C to this
ellipse, i.e.,

(Re(z — ¢))? n (Im(z — c))Q‘

d(z; F) = e =
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Using ellipse instead of band

Measure of the distance of the spectrum to the undesirable frequency
[w — b,w + b], we define

A p(v) = min{d(\(v); E) : M) € A(v)},
where E = (a, b, iw). Similarly,

dp,e(v) = min{dp g, (v) : E; € £},
where E; := (a;, b, iw;) is defining the jth ellipse for the jth

undesirable frequency band [w; — b;,w; + b;] with relative importance
aj >0and & :={Ei,..., E} is the set of k corresponding ellipses.
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New optimization criteria

® Frequency isolation while minimizing spectral abscissa (FI1)

Fi1: min  anck (v
veERS

)
s.t. dA,g(v) > 1,
ancek (V) < tolg, forsome tolg, < 0,
v; >0forj=1,...,s.
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New optimization criteria

® Frequency isolation while maximizing the major axis of the ellipses
(F12)

k
Fl2: i .
myr 2 dvons ()

st anmek(v) < tolg, forsome tolg, < 0,
v; >0forj=1,...,s.
where ap g(v) = min{a(A(v); E) : A(v) € A(v)},

b|Re z|

CL(Z;E) — b2 —(Im z—w)2’
o0 otherwise.

ifImz € (w—b,w+b),
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GRANSO: GRadient-based Algorithm for Non-Smooth
Optimization

Requires gradients:

AA(v) _ &* (A(ﬁ)gjgf) e
v lv—p 2% (2A(D)M + C(d))a
danck (v) _ Re OA(v)
v veb Ov; v=p
4 E) = 2 <Re(z(t) - c2) - Rez’ (t) N Im(z(t) — 02) . Imz’(t)) ,
a b
o) B = bsgn(Re z(t)) - Re 2’ (t) b|Re z(t)|(Im z(t) — w) - Im z'(t).

(b2 — (Imz(t) — w)2)'/ (b2 — (Im 2(t) — w)2)"/2
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Apply s times efficient algorithm for computing eigenvalues of
(CSymDPR1) matrix A = D + puu’ .
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. — GRANSO
Introduction and mofivation Modified Rayleigh quotient Approximation
Solving optimization problem vieigh PP

The eigenvalues of A are the zeros of the secular function:

2n 2
FN=1+pY d_“—_ZA =1+ pul(D - M) lu
i=1

and the corresponding eigenvectors are given by

Yi

w; = ———, where y; = (D — NI)"tu, i=1,...

lyilly”
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initial vector yo # 0

Rayleigh quotient iteration Modified Rayleigh quotient iteration
A=0 A=0
until convergence until convergence
_ T 0
@y =(A- )1y _ 0 (A-XDy
i @ 1 =n"—5T5
® 1= 5T ®O)\=)\+u
@ A=A+ @y’ :=(D—-A)tu
o=y compute eigenvectors

N. Jakovéevi¢ Stor, I. Slapni€ar, and Z. Tomljanovi¢. Fast computation of optimal
damping parameters for linear vibrational systems.arXiv e-prints, 2020
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Cezt(v) = Z vigigt = Gdiag(v)GT
i=1
How to get from Ay = Ay, where
A 0 Q
T - —aQ — T Gdiag(v)GTR |’

to multiple CSymDPR1 eigenvalue problem?
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0 Q n 0 0
—Q —a 0 —®TGdiag(v)GT®

o
|
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- To a7 [0 0 |
PN A= g Lol o —eTcdingwicTe| | T
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4.4

—@ @ ,  Where
Vs
0

~— pT
and G=P o7 -
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D, Vs

.\I.I,n

+ +.

Matea Ugrica

17127



GRANSO

Introduction and motivation
N P Modified Rayleigh quotient Approximation
Solving optimization problem
Numerical experiments DPR1 structure
p Optimization algorithm

+ +...+

Dy,

17127

Matea Ugrica



. - GRANSO
Introduction and motivation . . —
. P Modified Rayleigh quotient Approximation
Solving optimization problem
N . DPR1 structure
Numerical experiments
Optimization algorithm

+ 4.+

Matea Ugrica QEPs with low-rank updates

17127



. — GRANSO
Introduction and motivation
N P Modified Rayleigh quotient Approximation
Solving optimization problem
N . DPR1 structure
Numerical experiments
Optimization algorithm

4.+

Matea Ugrica QEPs with low-rank updates

17127



. - GRANSO
Introduction and motivation . . —
. P Modified Rayleigh quotient Approximation
Solving optimization problem
N . DPR1 structure
Numerical experiments
Optimization algorithm

Matea Ugrica QEPs with low-rank updates

17127



Introducti d tivati GRANSO
" I’O. ue Ior'1 a.n r'no fvation Modified Rayleigh quotient Approximation
Solving optimization problem DPR1 structure

DPR1 structure

Numerical experiment i
umerical experiments Optimization algorithm

Algorithm 1 Frequency-weighted damping optimization algorithm

Input: M and K, « > 0 for Cjyy and G, set of k ellipses &,

weights [¢1,..., ¢y with each ¢; € (0,1] for elipse E; € €&,
tolg, < 0, initial viscosity vini; € RY, and approach € {1, 2}.

Output: Computed for optimized viscosities v,y € RY. for either FI1 or

N9 R N

FI2

. [®@, ] matrices from linearization
. [¥, D, U, Z] matrices that construct low-rank structure
: if approach =1 then

Vopt <— solution returned by GRANSO for FI1 initialized at vinit
else
Vopt <— solution returned by GRANSO for FI2 initialized at vinit

: end if
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Figure: n-mass oscillator

n = 200-i, i=1,...,10,

M = diag(mi,ma,...,my),
990 . ,
m; = 10+m'(1—1),221,...,n
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Example

k1+ka —ko

K = | k= - =& . ki=54i=1,...

.. .. —ky,
_kn kn+kn+1

Example - eigenvalue approximation

T T T
Cext = vieger, +va(e; —ejr1)(ej —ej41)" +vsee) , o = 0.004

v = [v1,v2,v3]T, v1,v2,v3 € [0.1,1.1]

. n 3n 5n
(kvjal) - (E71_071_0>
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B
L ..
k1 ka kn kn1

Figure: n-mass oscillator

n = 1000,
2n —1

. n
m; = mn+171’:W for Z:].,...,a,

ki = 5 for i=1,...,n+1,
(J, k, 1) (100,400, 900),

Uinit = ones(3,1).
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E = (0.001,0.2,0.951)

12r : 121
1r 1r
08} 08F
0.6 0.6+
04t £ 04t
02H * Vzero ': 02F
© Umnit
* Uopt
0 1 1 1 1 X
25 2 -5 -1 0.5 0
%107
(a) Spectral abscissa minimization only  (b) Approach 1 (Fixed ellipses)
314.7 8.032
Vopt = | 94.1 Vopt = |8.184
124.5

9.970
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Eq = (~,0.05,0.1i), ¢1 = 1, E3 = (~,0.05,0.6i), p3 = 0.2, Egz = (~,0.05,1.1i), ¢3 = 0.1

DRI

e
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Thank you for your attention!
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